Linear versus Self-Sustained Interdecadal Thermohaline Variability in a Coupled Box Model
نویسندگان
چکیده
Recent studies of decadal/interdecadal climate variability suggested two main classes of mechanisms: selfsustained (supercritical) oscillations due to the internal nonlinearity of the ocean and linear (subcritical) thermohaline oscillations driven by stochastic atmospheric forcing. The authors use a coupled ocean–atmosphere meridional box model to carefully examine these two alternatives. It is shown that a weakly nonlinear relation between the north–south density gradient in the ocean and the meridional ocean transport can lead to selfsustained oscillations. A nonlinear relation between the SST and the air–sea heat flux can also lead to selfsustained oscillations, although indications are given that the air–sea heat flux depends linearly on the SST for a wide range of SST perturbations. It is thus concluded that, if interdecadal climate variability is due to selfsustained oscillations, the necessary nonlinearity must be related to internal ocean dynamics rather than to the air–sea interaction or to nonlinear atmospheric dynamics. The box model results are used to discuss a simple criterion, based on the probability distribution function of the meridional circulation time series, for differentiating between self-sustained and linear variability. This criterion could not rule out either the linear or nonlinear hypotheses for the thermohaline variability in the GFDL coupled general circulation model run of Delworth, Manabe, and Stouffer. This may indicate that the variability in the coupled general circulation model is near critical.
منابع مشابه
A linear thermohaline oscillator driven by stochastic atmospheric forcing
The interdecadal variability of a stochastically forced four-box model of the oceanic meridional thermohaline circulation (THC) is described and compared to the THC variability in the coupled ocean-atmosphere GCM of Delworth, Manabe, and Stouffer (1993). The box model is placed in a linearly stable thermally dominant mean state under mixed boundary conditions. A linear stability analysis of thi...
متن کاملStochasticity and Spatial Resonance in Interdecadal Climate Fluctuations
Ocean{atmosphere interaction plays a key role in climate uctuations on interdecadal timescales. In this study, diierent aspects of this interaction are investigated using an idealized ocean{atmosphere model, and a hierarchy of uncoupled and stochastic models derived from it. The atmospheric component is an eddy-resolving two-level global primitive equation model with simpliied physical paramete...
متن کاملDecadal Variability in Coupled Sea-Ice–Thermohaline Circulation Systems*
An interdecadal oscillation in a coupled ocean–ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a the...
متن کاملOn the Robustness of the Interdecadal Modes of the Thermohaline Circulation
Ocean models in box geometry forced by constant surface fluxes of density have been found to spontaneously generate interdecadal oscillations of the thermohaline circulation. This paper analyzes the sensitivity of these oscillations to various physical effects, including the presence of mesoscale turbulence, various thermal surface boundary conditions, and the presence of wind forcing or bottom...
متن کاملStability of the Thermohaline Circulation in a Simple Coupled Model
In an analytical study the stability of the thermohaline circulation with respect to freshwater perturbations in high latitudes is investigated. The study is based on a coupled ocean and atmosphere box model in an idealized North Atlantic geometry. The box model provides a qualitative understanding of how the thermohaline circulation is a ected by feedback mechanisms associated with changes in ...
متن کامل